math basics
view markdownmisc
- $\left( \frac{n}{k} \right) < \left( \frac{ne}{k} \right)^k$
 - Stirling’s formula: $ n! ~= (\frac{n}{e})^n $
    
- corollary: log(n!) = 0(n log n)
 - gives us a bound on sorting
 - $\left( \frac{n}{e} \right)^n < n!$
 
 - $(1-x)^N \leq e^{-Nx}$
 - Poisson pmf approximates binomial when N large, p small
 
functions
- Gamma: $\Gamma(n)=(n-1)!=\int_0^\infty x^{n-1}e^{-x}dx$
 - Zeta: $\zeta(x) = \sum_1^\infty \frac{1}{x^2} $
 - Sigmoid (logistic): $f(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^x+1}$
 - Softmax: $f(x) = \frac{e^{x_i}}{\sum_i e^{x_i}}$
 - spline: piecewise polynomial
 
stochastic processes
- Stochastic - random process evolving with time
 - Markov: $P(X_t=x|X_{t-1})=P(X_t=x|X_{t-1}…X_1)$
 - Martingale: $E[X_t]=X_{t-1}$
 
abstract algebra
- Group: set of elements endowed with operation satisfying 4 properties:
 
- closed 2. identity 3. associative 4. inverses
 
- Equivalence Relation;
 
- reflexive 2. transitive 3. symmetric
 
discrete math
- Goldbach’s strong conjecture: Every even integer greater than 2 can be expressed as the sum of two primes (He considered one a prime).
 - Goldbach’s weak conjecture: All odd numbers greater than 7 are the sum of three primes.
 - Set - An unordered collection of items without replication
 - Proper subset - subset with cardinality less than the set
    
- A U A = A Idempotent law
 
 - Disjoint: A and B = empty set
 - Partition: mutually disjoint, union fills space
 - powerset $\mathcal{P}$(A) = set of all subsets
 - Converse: $q\to p$ (same as inverse: $-p \to -q$)
 - $p_1 \to p_2 \iff - p_1 \lor p_2 $
 - The greatest common divisor of two integers a and b is the largest integer d such that d $|$ a and d $|$ b
 - Proof Techniques
    
- Proof by Induction
 - Direct Proof
 - Proof by Contradiction - assume p $\land$ -q, show contradiction
 - Proof by Contrapositive - show -q $\to$ -p
 
 
identities
- $e^{-2lnx}= \frac{1}{e^{2lnx}} = \frac{1}{e^{lnx}e^{lnx}} = \frac{1}{x^2}$
 - $\ln(xy) = \ln(x)+\ln(y)$
 - $\ln x * \ln y = \ln(x^{\ln y})$
    
- difference between log 10n and log 2n is always a constant (about 3.322)
 
 - $\log_b (x) = \log_d (x) / \log_d (b)$
 - partial fractions: $\frac{3x+11}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}$
 - $(ax+b)^k = \frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+…$
 - $(ax^2+bx+c)^k = \frac{A_1x+B_1}{ax^2+bx+c}+…$
 - $\cos(a\pm b) = \cos(a)\cos(b)\mp \sin(a)\sin(b)$
 - $\sin(a \pm b) = \sin(a)\cos(b) \pm \sin(b)\cos(a)$
 
imaginary numbers
- complex conjugate of z=x+iy is $z^*$ = x - iy
 - Euler’s formula $e^{i \theta} = \cos (\theta) + i \sin (\theta)$
 - 
    
sometimes we write imaginary numbers in polar form: $z = z e^{i \theta}$ - makes multiplication / division simpler
 
 - 
    
absolute value / modules of imaginary numbers: $ a + ib = \sqrt{a^2 + b^2}$  
spaces
- hilbert space - requires an inner product (useful in analyzing kernels) - more general than an inner product space
    
- reproducing kernel hilbert space with extra property